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Abstract. Topology optimization problems often support multiple local minima due to a lack5
of convexity. Typically, gradient-based techniques combined with continuation in model parameters6
are used to promote convergence to more optimal solutions; however, these methods can fail even7
in the simplest cases. In this paper, we present an algorithm to perform a systematic exploratory8
search for the solutions of the optimization problem via second-order methods without a good initial9
guess. The algorithm combines the techniques of deflation, barrier methods and primal-dual active10
set solvers in a novel way. We demonstrate this approach on several numerical examples, observe11
mesh-independence in certain cases and show that multiple distinct local minima can be recovered.12
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1. Introduction. Topology optimization has become popular as an effective15

technique in structural and additive manufacturing, and has found uses in architec-16

ture, medicine and material science [2, 31, 35]. The objective is to find the optimal17

distribution of a fluid or material within a given domain that minimizes a problem-18

specific cost functional. In contrast to shape optimization, the topology of the struc-19

ture does not need to be chosen a priori.20

There are several mathematical parametrizations for the topology of a material21

including density approaches [7, 8, 11, 39] and level set methods [3, 4, 59]; these can be22

optimized by a variety of strategies such as topological derivatives [53], evolutionary23

methods [63], the method of moving asymptotes [55], and barrier methods [20, 30, 37,24

47]. We choose to represent our topology with the density approach. This introduces25

a function, denoted ρ, that represents the material distribution over the given domain.26

Ideally we would find an optimizing material distribution ρ : Ω → {0, 1} indicating27

presence or absence of material. However, this is numerically intractable in general28

and we therefore consider densities ρ : Ω → [0, 1] in order to exploit continuous29

optimization techniques. The model is then regularized to favor solutions where ρ is30

close to zero or one.31

Due to the nonlinear relation between ρ and the solution of the underlying physical32

system, multiple local minima can occur even in problems with a linear governing33

partial differential equation (PDE). For example, minimizing the power dissipation of34

a fluid governed by the Stokes equations flowing through a pipe can give rise to distinct35

pipe configurations that locally minimize the power lost to dissipation [11, Sec. 4.5].36

Currently, the main technique to address this is the use of continuation methods to37
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promote convergence to better local minima. However, Stolpe and Svanberg [54] have38

provided elementary examples where these continuation methods fail. For example,39

a solid isotropic material with penalization (SIMP) formulation [8] of the compliance40

minimization of a six-bar truss can be reduced to the optimization problem [54, Sec.41

3.1],42

min
(x1,x2)∈R2

(
max{ 8βt

xps1 + 5xps2

+
2βt

5xps1 + xps2

,
8

xps1 + 5xps2

+
18

5xps1 + xps2

}
)

43

such that x1 + x2 = 1, 0 ≤ x1, x2 ≤ 1.4445

Here ps denotes the SIMP continuation parameter and βt = 2(1 − ν2
t )/E, where νt46

is the Poisson ratio and E is the modulus of elasticity. SIMP is used to penalize47

solutions that are not either zero or one and is further discussed in subsection 2.3.48

A typical strategy is to find a minimizer to the optimization problem at ps = 1,49

and then at each continuation step use the previous solution as initial guess for the50

next value of ps. In this case, suppose we fix βt = 2.6. A poor starting guess for51

ps = 1 can converge to the local minimum x = (0.5, 0.5). Then even as ps →∞, the52

continuation method will always return x = (0.5, 0.5) and will not converge to the53

true global solution, x = (0, 1).54

The calculation of multiple stationary points is important because iterative meth-55

ods often give no guarantee whether they converge to a local or global minimum. By56

finding multiple stationary points, one is able to choose the best available, in a post-57

processing step. Furthermore, an iterative method may converge to a stationary point58

which is undesirable due to manufacturing or aesthetic reasons; thus industrial ap-59

plications can benefit from having a choice of multiple locally optimal configurations60

[18].61

In this paper we formulate an algorithm, which we call the deflated barrier method,62

for finding multiple stationary points of topology optimization problems and present63

several large-scale numerical examples arising from the finite element discretization of64

PDEs. An example we consider is the topology optimization of the power dissipation65

of fluid flow governed by the incompressible Navier–Stokes equations on a rectangular66

domain with five small decagonal holes. We discover 42 stationary points of this67

optimization problem with the deflated barrier method. The material distribution of68

these solutions are shown in Figure 1.69

The deflated barrier method is a combination of deflation [13, 21, 22], barrier70

methods [23, 24, 25, 48, 49, 58, 60], primal-dual active set solvers [9, 28] and predictor-71

corrector methods [51]. The combination of primal-dual active set solvers, barrier and72

deflation methods in the manner proposed is novel. The combination does not suffer73

the poor behavior that barrier methods traditionally exhibit as the barrier parame-74

ter approaches zero. In fact, in our numerical examples, the combination performs75

better than the optimize-then-discretize formulation of the primal-dual interior point76

method where Newton–Kantorovich iterates are used to solve the subproblems, either77

approximately or exactly. The predictor-corrector method is also adapted for use with78

box-constrained variables to ensure the predictor is feasible. The main contribution79

of this work is an algorithm to robustly determine multiple solutions to nonconvex,80

inequality and box-constrained infinite-dimensional optimization problems starting81

from poor initial guesses.82

Other approaches to computing multiple solutions of topology optimization prob-83

lems are possible. Zhang and Norato [64] apply the tunneling method [33] to these84

problems, adapting the method of moving asymptotes. Tunneling proceeds by finding85
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MULTIPLE SOLUTIONS IN TOPOLOGY OPTIMIZATION 3

Fig. 1. The material distribution of 42 stationary points of the five-holes double-pipe optimiza-
tion problem as discovered by the deflated barrier method, and their associated energies J. The fluid
flow is governed by the incompressible Navier–Stokes equations. The formulation of the problem is
described in subsection 4.4. Black corresponds to a value of ρ = 0, white corresponds to a value of
ρ = 1, and the gray regions are the five small holes.

a single minimum, then looking for other controls that yield the same functional value86

(attempting to tunnel into other basins) by solving an auxiliary equation. Deflation87

is used in the tunneling phase to ensure that the Gauss–Newton procedure applied to88

the tunneling functional does not converge to the current state.89

The outline of the paper is as follows. In section 2 we formulate some topology90

optimization problems for pipe design and structural compliance. The deflated barrier91

method is described in section 3. Several examples of topology optimization problems92

are given in section 4, where we discover multiple solutions for Navier–Stokes flow,93

Stokes flow, and structural compliance, and consider the performance of our algo-94

rithm. In section 5 we outline our conclusions. A result concerning the equivalence of95

Hintermüller et al.’s primal-dual active set strategy [28] and Benson and Munson’s re-96

duced space active-set strategy [9] is given in Appendix A. In Appendix B we describe97

our novel feasible tangent prediction method.98
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2. Topology optimization formulations.99

2.1. Topology optimization of Stokes flow. We consider the formulation of100

the topology optimization of fluids proposed in the pioneering work of Borrvall and101

Petersson [11]. They derive a ‘generalized Stokes problem’ incorporating a material102

distribution variable which has a value of one where fluid is present and zero where103

there is void. The derived optimization problem requires no further regularization104

for well-posedness, in contrast to structural topology optimization. The optimization105

problem supports (not necessarily unique) local minima.106

The topology optimization problem of Borrvall and Petersson is107

min
(u,ρ)∈H1

g,div(Ω)d×Cγ
J(u, ρ) :=

1

2

∫
Ω

(
α(ρ)|u|2 + ν|∇u|2 − 2f · u

)
dx,(BP)108

109

where u denotes the velocity of the fluid, ρ is the material distribution of the fluid110

and111

H1
g(Ω)d := {v ∈ H1(Ω)× · · · ×H1(Ω)︸ ︷︷ ︸

d times

: v|∂Ω = g},112

H1
g,div(Ω)d := {v ∈ H1

g(Ω)d : div(v) = 0 a.e. in Ω},113

Cγ :=

{
η ∈ L∞(Ω) : 0 ≤ η ≤ 1 a.e.,

∫
Ω

η dx ≤ γ|Ω|, γ ∈ (0, 1)

}
.114

115

In this work, H1(Ω) denotes the Sobolev space W 1,2(Ω) and L∞(Ω) denotes the116

vector space of essentially bounded measurable functions equipped with the essential117

supremum norm. Furthermore, Ω ⊂ Rd is a Lipschitz domain with dimension d = 2118

or d = 3, f ∈ L2(Ω)d is a body force and ν > 0 is the (constant) viscosity. The119

restriction, |∂Ω, is to be understood in the boundary trace sense. Moreover, the120

boundary data g ∈ H1/2(∂Ω)d and g = 0 on Γ ⊂ ∂Ω, with Hd−1(Γ) > 0, i.e.121

Γ has nonzero Hausdorff measure on the boundary. Mixed boundary conditions are122

discussed in subsection 4.2. Here, α is the inverse permeability, modeling the influence123

of the material distribution on the flow. For values of ρ close to one, α(ρ) is small,124

permitting fluid flow; for small values of ρ, α(ρ) is very large, restricting fluid flow.125

The function α satisfies the following properties:126

(A1) α : [0, 1]→ [α, α] with 0 ≤ α < α <∞;127

(A2) α is convex and monotonically decreasing;128

(A3) α(0) = α and α(1) = α,129

generating a superposition operator also denoted α : Cγ → L∞(Ω; [α, α]). Typically,130

in the literature α takes the form [11, 20]131

α(ρ) = ᾱ

(
1− ρ(q + 1)

ρ+ q

)
,(2.1)132

133

where q > 0 is a penalty parameter, so that limq→∞ α(ρ) = ᾱ(1 − ρ). The objective134

functional (BP) can be interpreted as the total potential power of the flow. The135

first and second terms in the integral measure the energy lost by the flow through136

the porous medium and the energy lost due to viscous dissipation, respectively. The137

third term attempts to maximize the flow velocities at the applied body force. (BP)138

is discussed in further detail by Borrvall and Petersson [11].139

Remark 2.1. The integral in (BP) is well defined. Indeed, since α is assumed140

to be convex, it is Borel measurable; also since ρ ∈ Cγ is Lebesgue measurable, the141

composition α(ρ) : Ω→ [α, α] is Lebesgue measurable.142
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MULTIPLE SOLUTIONS IN TOPOLOGY OPTIMIZATION 5

Theorem 2.2. [11, Th. 3.1] Suppose that Ω ⊂ Rd is a Lipschitz domain, with143

d = 2 or d = 3 and α satisfies properties (A1)–(A3). Then there exists a pair (u, ρ) ∈144

H1
g,div(Ω)× Cγ that minimizes J , as defined in (BP).145

Due to the lack of strict convexity in (BP), a minimizing pair is not necessarily unique.146

2.2. Construction of the barrier functional. In this subsection we formu-147

late a barrier functional with an enlarged feasible set that will be employed by our148

algorithm to find multiple solutions of the Borrvall–Petersson optimization problem.149

We first consider the volume constraint. This constraint is typically modeled as150

an inequality constraint. However, as we show below, this constraint is active at an151

optimal solution, and so we may also apply it as an equality constraint. To the best152

of our knowledge, the following result is novel.153

Proposition 2.3. If the pair (u∗, ρ∗) is an isolated local or global minimizer of154

J as defined in (BP) and γ < 1, then
∫

Ω
ρ∗ dx = γ|Ω|.155

Proof by contradiction. Suppose there exists a pair (u∗, ρ∗) ∈ H1
g,div(Ω)d × Cγ156

that is an isolated local or global minimizer of J(u, ρ) such that V :=
∫

Ω
ρ∗ dx < γ|Ω|.157

By the definition of an isolated local minimizer, there exists an r > 0 such that for158

any (v, η) that satisfies,159

‖u∗ − v‖H1(Ω) + ‖ρ∗ − η‖L∞(Ω) ≤ r160161

then J(u∗, ρ∗) < J(v, η). Then for any function δρ ∈ Cγ such that162

0 < ‖δρ‖L1(Ω) ≤ (γ|Ω| − V ),(2.2)163

0 < ‖δρ‖L∞(Ω) ≤ r,(2.3)164

0 ≤ ρ∗ + δρ ≤ 1,(2.4)165166

we have that ρ∗ + δρ ∈ Cγ from (2.2) and (2.4) and ρ∗ + δρ lies in the L∞-r-167

neighborhood of ρ∗ from (2.3). Such a δρ exists, for example,168

δρ = c(1− ρ∗), where c = min

{
r

‖1− ρ∗‖L∞(Ω)
,
γ|Ω| − V
|Ω| − V

}
.169

170

We see that c > 0 since r > 0 and V < γ|Ω| < |Ω|. Furthermore δρ satisfies (2.2)–(2.4)171

since,172

‖δρ‖L1(Ω) = c

∫
Ω

(1− ρ∗)dx ≤ c(|Ω| − V ) ≤ γ|Ω| − V,173

‖δρ‖L∞(Ω) ≤ c‖1− ρ∗‖L∞(Ω) ≤ r,174

0 ≤ ρ∗ + δρ = ρ∗ + c(1− ρ∗) ≤ ρ∗ + 1− ρ∗ ≤ 1.175176

Since α(·) is monotonically decreasing and ρ∗ and δρ are non-negative and not equal177

to zero, then α(ρ∗ + δρ) ≤ α(ρ∗) a.e. and hence J(u∗, ρ∗ + δρ) ≤ J(u∗, ρ∗).178

Given we can tighten the inequality volume constraint to an equality volume con-179

straint, we now define the Lagrangian and the enlarged feasible-set barrier functional,180

respectively, as:181

L(u, ρ, p, p0, λ) := J(u, ρ)−
∫

Ω

p div(u)dx−
∫

Ω

p0p dx−
∫

Ω

λ(γ − ρ)dx;(2.5)182

L
εlog
µ (u, ρ, p, p0, λ) := L(u, ρ, p, p0, λ)

− µ
∫

Ω

(log(ρ+ εlog) + log(1 + εlog − ρ))dx,
(2.6)183

184
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6 I. P. A. PAPADOPOULOS, P. E. FARRELL AND, T. M. SUROWIEC

where p ∈ L2(Ω) denotes the pressure, λ is the Lagrange multiplier for the volume185

constraint, p0 ∈ R is the Lagrange multiplier to fix the integral of the pressure,186

0 ≤ εlog � 1 and µ ≥ 0, where µ is the barrier parameter.187

The classical barrier functional is given by L0
µ. The role of εlog is to enlarge the188

feasible region permitted by the barrier terms. In the deflated barrier method we do189

not use the barrier terms to enforce the box-constraints on ρ, but rather to perform190

continuation in the barrier parameter to follow a central path. This provides robust191

convergence and offers an opportunity to find other solutions of the optimization192

problem, as explained in section 3.193

We note that the Euler–Lagrange equation of J(u, ρ) with respect to u satisfies194

the generalized Stokes momentum equation formulated by Borrvall and Petersson195

[11, Eq. 12]. Hence, we are only required to enforce the incompressibility and volume196

constraints. In the case where we wish to minimize the power dissipation of a fluid197

flow governed by a generalized Navier–Stokes momentum equation, we are required198

to introduce three extra Lagrange multipliers, as done in subsection 4.4.199

2.3. Topology optimization of the compliance of elastic structures. A200

significant portion of the topology optimization literature focuses on minimizing the201

compliance of a structure, such as a Messerschmitt–Bölkow–Blohm (MBB) beam or a202

cantilever. Compliance problems involve finding the optimal topology of a structure203

obeying a volume constraint within a specified domain that minimizes the displace-204

ment of the structure under a body or boundary force. For simplicity we consider205

structures that obey linear elasticity. The optimization problem we consider is posed206

as follows,207

min
(u,ρ)∈H1

ΓD
(Ω)d×Cγ

J(u, ρ) :=

∫
ΓN

f · u ds(C)208

209

such that,210

−div (σ) = 0 in Ω,211

σ = k(ρ) [2µlε(u) + λltr(ε(u))I] in Ω,212

σn = f on ΓN , 0 ≤ ρ ≤ 1 a.e. in Ω, and

∫
Ω

ρ dx = γ|Ω|,213
214

where, H1
ΓD

(Ω)d :=
{
v ∈ H1(Ω)d : v|ΓD = 0

}
, |ΓD is understood in the boundary215

trace sense, u = u(ρ) denotes the displacement of the structure, σ denotes the stress216

tensor, the traction f ∈ H1/2(ΓN )d is given, ΓN ,ΓD ⊂ ∂Ω are known boundaries217

on ∂Ω such that ΓN ∪ ΓD = ∂Ω, µl and λl are the Lamé coefficients, tr(·) is the218

matrix-trace operator, I is the d× d identity matrix, n is the outward normal and219

ε(u) =
1

2
(∇u +∇u>), k(ρ) = εSIMP + (1− εSIMP)ρps ,220

221

where 0 < εSIMP � 1 and ps ≥ 1. Unless stated otherwise, we choose εSIMP = 10−5222

and ps = 3. The use of k(ρ) is known as the Solid Isotropic Material with Penal-223

ization (SIMP) model. Bendsøe and Sigmund [8, Ch. 1] provide a concise physical224

interpretation of the SIMP model. In essence, for ρ close to one, k(ρ) is close to one,225

indicating the presence of material, whereas where ρ is close to zero, k(ρ) approaches226

εSIMP, indicating void. Thus, k is the reverse of the inverse permeability, α. It is227

typical to raise ρ to the power of ps > 1 in order to penalize intermediate values of ρ.228
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We introduce a Lagrange multiplier v ∈ H1
ΓD

(Ω)d and reformulate (C) as finding229

the stationary points (u, ρ,v) of230 ∫
ΓN

f · u ds+

∫
Ω

k(ρ) [2µlε(u) : ε(v) + λltr(ε(u)) · tr(ε(v))] dx−
∫

ΓN

f · v ds(2.7)231
232

such that 0 ≤ ρ ≤ 1 a.e. in Ω, and
∫

Ω
ρ dx = γ|Ω|.233

By deriving the Euler–Lagrange equations of (2.7), we see that the linear elasticity234

PDE constraint on u must be satisfied. However, if we consider the adjoint equation235

involving v, it can be verified that v = −u. Substituting this relation into (2.7), we236

see that (2.7) is equivalent to finding the stationary points of237

2

∫
ΓN

f · u ds−
∫

Ω

k(ρ) [2µlε(u) : ε(u) + λltr(ε(u)) · tr(ε(u))] dx(2.8)238
239

such that 0 ≤ ρ ≤ 1 a.e. in Ω, and
∫

Ω
ρ dx = γ|Ω|. The substitution is useful as it240

greatly reduces the size of the problem after discretization.241

Unfortunately, the problem in general is ill-posed and does not have minimizers in242

the continuous setting. Näıve attempts at finding minimizers often yield checkerboard243

patterns of ρ. Although a different choice of finite element spaces may avoid the244

checkerboarding, the solutions will still be mesh-dependent. As the mesh is refined, the245

beams of the solutions will become ever thinner, leading to nonphysical solutions in the246

limit. There are several schemes employed by the topology optimization community to247

obtain physically reasonable solutions for ρ and they are known as restriction methods248

[8]. We opt for the addition of a Ginzburg–Landau energy term,249

JGL(u, ρ) := J(u, ρ) +
βε

2

∫
Ω

|∇ρ|2 dx+
β

2ε

∫
Ω

ρ(1− ρ)dx,250
251

with 0 < β � 1, 0 < ε � 1, to the objective function. JGL requires ρ to be252

weakly differentiable. Hence we now seek a solution ρ ∈ Cγ ∩H1(Ω). Physically, the253

Ginzburg–Landau term corresponds to penalizing fluctuations in the values of ρ. As254

ε→ 0, it was shown by Modica [40] that the Ginzburg–Landau energy Γ-converges to255

the perimeter functional associated with restricting ρ(x) ∈ {0, 1}, providing rigorous256

mathematical grounding for this choice of regularization. For sufficiently large values257

of β, this introduces minima and removes the checkerboarding effect. Other restriction258

methods used by the topology optimization community include gradient control [10],259

perimeter constraints [10], sensitivity filtering [12, 52], design filtering [15, 32] and260

regularized penalty [10].261

After these manipulations, the Lagrangian is given by262

L(u, ρ, λ) := 2

∫
ΓN

f · u ds−
∫

Ω

k(ρ) [2µlε(u) : ε(u) + λltr(ε(u)) · tr(ε(u))] dx263

+
βε

2

∫
Ω

|∇ρ|2dx+
β

2ε

∫
Ω

ρ(1− ρ)dx−
∫

Ω

λ(γ − ρ)dx,264
265

where λ ∈ R is the Lagrange multiplier for the equality volume constraint. We then266

define the enlarged feasible-set barrier functional as in (2.6).267

We have formulated enlarged feasible-set barrier functionals for both Borrvall–268

Petersson and structural compliance optimization problems. Finding stationary points269

of these barrier functionals is equivalent to computing minima, maxima and saddle270

points of the underlying optimization problems. In the next section we will introduce271

our algorithm and explain how we obtain multiple stationary points.272
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3. The deflated barrier method. In the following sections, we describe the273

components of the deflated barrier method. More specifically, we justify the usage274

of a barrier method where the subproblems are solved with a primal-dual active275

set solver to handle the effects of the barrier parameter in the Hessian. This is276

in contrast to a direct application of a discretize-then-optimize (DTO) primal-dual277

interior method, which does not use the structure of the original infinite-dimensional278

optimization problem. In the context of PDE-constrained optimization, ignoring the279

problem structure often results in mesh-dependence of the solver. Mesh-dependence is280

the phenomenon whereby with each refinement of the mesh, the number of iterations281

required by the optimization algorithm increases in an unbounded way [50].282

3.1. Choosing a solver for the subproblems. Approximately solving the283

first order conditions of L0
µ as µ→ 0 is the classical primal interior point approach to284

finding the minima of (BP) and (C). Without additional care, a direct implementation285

results in the following poor numerical behavior:286

(B1) The Hessian of L0
µk

(z) has condition number O(1/µk). Hence as µ decreases,287

the computed Newton updates may become inaccurate and require more288

solver time [24, Th. 4.2];289

(B2) An initial guess of z∗ = zk for the subproblem µ = µk+1 is asymptotically290

infeasible if an exact full Newton update of the primal interior point method291

is used. More precisely, if δρ0
k+1 is the calculated Newton update for ρ at the292

first iteration of the Newton solver at µ = µk+1, then as µ → 0, we see that293

0 ≤ ρk + δρ0
k+1 ≤ 1 a.e. does not hold [24, Sec. 4.3.3].294

Typically, to avoid the poor numerical behavior of (B1) and (B2), the DTO primal295

interior point method is reformulated as a primal-dual interior point method, eliminat-296

ing the rational expressions. Since the problem is first discretized, the slack variables297

associated with box constraints are associated to the primal variable component-wise.298

This manifests as a block identity matrix within the full Hessian. The Hessian can299

then be reduced and the primal-dual approach is reformulated into a condensed form.300

It is well known that PDE-constrained optimization solvers suffer from mesh-301

dependence when they do not properly treat the structure of the underlying infinite-302

dimensional problem [50]. In order to obtain accurate solutions, where it is clear if the303

material distribution indicates material or void, we may require several refinements304

of the mesh; in this context, it is clear that mesh-dependence would be particularly305

disadvantageous. The mesh-independence of our algorithm will be carefully studied306

in the subsequent numerical examples, and analyzed in future work.307

In order to properly treat the structure of the underlying infinite-dimensional308

problem, we opt for an optimize-then-discretize (OTD) method. The full Hessian309

arising from an OTD primal-dual interior point method is no longer easily reduced,310

since the block associated with the slack variables is now a mass matrix, rather than311

the identity. To avoid solving uncondensed large systems involving three times the312

number of degrees of freedom of a primal approach, the goal is to develop an OTD313

barrier method that avoids the poor numerical behavior of (B1) and (B2). In a novel314

approach, we achieve this by solving the subproblems arising from the first order315

conditions of the enlarged feasible-set barrier functional L
εlog
µ , while still enforcing the316

true box constraints, 0 ≤ ρ ≤ 1 a.e., with a primal-dual active set solver. Whereas317

in a standard barrier method, the barrier terms act as a replacement for the box318

constraints on ρ, here we retain the box constraints to be handled by the primal-dual319

active set solver. The barrier terms are instead used for continuation of the problem,320

to aid global convergence and to search for other branches of solutions.321
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MULTIPLE SOLUTIONS IN TOPOLOGY OPTIMIZATION 9

The two inner solvers we consider are Hintermüller et al.’s primal-dual active set322

strategy (HIK) [28] and Benson and Munson’s active-set reduced space strategy (BM)323

[9]. We briefly illustrate the basic approach taken to solve the individual subproblems324

using the log-barrier approach coupled with a primal-dual active set solver. Let J :325

Rn → R be a twice-continuously differentiable function and consider the following326

box-constrained nonlinear program:327

min
z∈Rn

J(z) subject to a ≤ z ≤ b.(3.1)328
329

Here, we assume that a, b ∈ Rn such that a < b (in each component) and we under-330

stand the inequality constraints a ≤ z ≤ b component-wise. Next, we formulate an331

‘outer approximation’ of (3.1) using enlarged feasible-set log-barrier terms (for any332

µ, εlog > 0):333

min
z∈Rn

{
J(z)− µ

n∑
i=1

[log(zi − (ai − εlog)) + log((bi + εlog)− zi)] : a ≤ z ≤ b
}
.334

335

We emphasize that there are two pairs of box constraints: the true box constraints336

[a, b] and the enlarged feasible-set box constraints [a− εlog, b+ εlog], εlog > 0. For any337

fixed µ > 0, the associated KKT-system has the form338

F (z)− λa + λb = 0,(3.2)339

λa, λb ≥ 0,(3.3)340

z − a ≥ 0, b− z ≥ 0,(3.4)341

〈λa, z − a〉(Rn)∗,Rn = 〈λb, b− z〉(Rn)∗,Rn = 0,(3.5)342343

where, λa, λb ∈ (Rn)∗ are Lagrange multipliers associated with the true box con-344

straints and345

F (z) := J ′(z)− µ

z − (a− εlog)
+

µ

b+ εlog − z
,(3.6)346

347

where the rational expressions are interpreted component-wise. The equivalent mixed348

complementarity problem is given by349

either ai < zi < bi and F (z)i = 0,(3.7)350

or ai = zi and F (z)i ≥ 0,(3.8)351

or zi = bi and F (z)i ≤ 0.(3.9)352353

Consider the natural residual function ϕ(x, y) = x− (x−y)+ where (·)+ := max(·, 0).354

This is an example of an NCP function, a class of functions that for x, y ∈ R satisfy355

ϕ(x, y) = 0 if and only if x, y ≥ 0, xy = 0.(3.10)356357

Using ϕ, we note that (3.2)–(3.5) can be reformulated as the following:358

F (z)− λa + λb = 0,(3.11)359

ϕ(λa, z − a) = λa − (λa − (z − a))+ = 0,(3.12)360

ϕ(λb, b− z) = λb − (λb − (b− z))+ = 0.(3.13)361362
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Assuming we are given a strictly enlarged-set feasible iterate z ∈ Rn, a − εlog <363

z < b + εlog, we linearize around the point (z, λa, λb) using the associated Newton-364

derivative and reduce the system based on the estimates of the active and inactive365

sets predicted by the semismooth Newton step.366

In HIK, the linearized system in the direction of (δz, δλa, δλb) is given by367

F ′(z)δz − δλa + δλb = −F (z) + λa − λb,(3.14)368369

where F ′(z) ∈ Rn×n denotes the Fréchet derivative of F and370

zi + δzi = ai if i ∈ Aa = {i : λai − zi + ai > 0},(3.15)371

zi + δzi = bi if i ∈ Ab = {i : λbi − bi + zi > 0},(3.16)372

λai + δλai = 0 if i ∈ Ia = {i : λai − zi + ai ≤ 0},(3.17)373

λbi + δλbi = 0 if i ∈ Ib = {i : λbi − bi + zi ≤ 0}.(3.18)374375

We define the active set by A = Aa ∪ Ab and the inactive set by I = Ia ∩ Ib. By376

substituting (3.15)–(3.18) into (3.14) and removing the rows associated with the active377

set, we observe that378

F ′(z)I,IδzI = −F ′(z)I,AδzA − F (z)I.(3.19)379380

We can therefore solve the reduced linear system (3.19) to find the remaining unknown381

components of δz.382

BM attempts to solve (3.7)–(3.9) as follows. Given a feasible iterate z with respect383

to the true box constraints, a ≤ z ≤ b, the active set is defined by384

A = {i : zi = ai and F (z)i > 0} ∪ {i : zi = bi and F (z)i < 0},(3.20)385386

and the inactive set is given by I = {i}ni=1\A. The linearized system in the direction387

of δz takes the form388

F ′(z)I,IδzI = −F (z)I and δzA = 0.(3.21)389390

The next iterate is then given by π(z+ δz), where π is the component-wise projection391

onto the true box constraints, i.e.392

π(z + δz)i =


ai if zi + δzi < ai,

zi + δzi if ai ≤ zi + δzi ≤ bi,
bi if zi + δzi > bi.

(3.22)393

394

The HIK solver is a well-established method and under suitable assumptions is equiva-395

lent to a semismooth Newton method [43, 44, 56] in both finite and infinite-dimensions396

[28]. This equivalence ensures local superlinear convergence and under further as-397

sumptions guarantees mesh-independence [29]. Until now, the BM solver had no398

supporting theoretical results, although is conveniently included in PETSc [6]. Ex-399

perimentally, we observe that the BM solver enjoys superlinear convergence. At first400

glance, the two solvers may appear quite different, but in Appendix A we prove that401

for a linear elliptic control problem, if the active and inactive sets coincide between402

the two algorithms, then the updates given by HIK and BM are identical.403

One common critique of barrier methods is that the step size rules for the update404

of the distributed control go to zero. We observe this in numerical examples if we405
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use a Newton solver; however, this issue is averted when using HIK or BM. A step406

size of one is always taken for the update of the primal variable’s active set, whereas407

a linesearch can be used for the update of the primal variable’s inactive set. Hence,408

areas of the domain where the control attains the constraint do not influence the step409

sizes of the updates for sections of the control which are strictly feasible.410

Both HIK and BM perform a pointwise projection on the iterates generated by411

the subproblems of the barrier functional. In the context of a classical OTD primal-412

dual interior point method applied to a PDE-constrained optimal control problem,413

under certain assumptions, Ulbrich and Ulbrich [57, 58] prove that local superlinear414

convergence holds if the iterates of the control and its associated Lagrange multipliers415

are pointwise projected to a controlled neighborhood of the central path. Although not416

all their assumptions hold in our case (in particular these problems are not convex),417

the combination of a primal-dual active set solver and barrier method mimics the418

computation of a Newton step of a primal-dual approach and then performing a419

pointwise projection. An advantage of our method is that our pointwise projection is420

unique and cheap to compute.421

Numerically, this method only requires solving linear systems that are less than422

or equal to the size of the linear systems in a standard barrier method. Moreover, in423

the BM solver, the constrained variables can never reach the bounds of the enlarged424

feasible-set, ensuring the Hessian remains bounded. Furthermore, both the BM and425

HIK solvers remove the rows and columns in the Hessian associated with the active426

constraints. It is these active constraints which are the source of the unbounded427

eigenvalues that cause the ill-conditioning of the barrier method as µ approaches zero.428

In Figure 7 we give an example demonstrating that the condition number is controlled429

by the elimination of the active set. Removing rows and columns associated with the430

active set mimics the principle of Nash et al.’s stabilized barrier method [41, 42].431

3.2. Deflation. Deflation is an algorithm for the calculation of multiple solutions432

of systems of nonlinear equations from the same initial guess. Let V and W be Banach433

spaces. Suppose a system of PDEs, F (z) = 0, F : V → W has multiple solutions434

z = z1, . . . zn, that we wish to find. We find the first solution by utilizing a Newton-435

like algorithm to find z1. Now instead of using a standard multistart approach which436

may converge to the same solution, we instead introduce a modified system G(z) = 0437

such that:438

1. G(z) = 0 if and only if F (z) = 0 for z 6= z1;439

2. A Newton-like solver starting from any initial guess z∗ 6= z1 applied to G will440

not converge to z1.441

This process is visualized in Figure 2. In principle, one can use the same initial guess442

to converge to multiple solutions. The modified system is obtained by applying a443

deflation operator, M(z; z1) : W →W to F such that:444

(D1) M(z; z1) is invertible for all z 6= z1 in a neighborhood of z1;445

(D2) lim infz→z1 ‖M(z; z1)F (z)‖ > 0.446

(D1) ensures that the resulting system has a solution if the original problem has an447

unknown solution, and (D2) ensures that a Newton-like method applied to the newly448

deflated system does not converge as z → z1. In this work we consider the shifted449

deflation operator M(z; z1) = (‖z − z1‖−2
V + 1)I, where I : W → W is the identity450

operator [21]. In particular, in all the numerical examples discussed in section 4,451

deflation is implemented with respect to the material distribution, i.e. M(z; z1) =452

(‖ρ−ρ1‖−2
L2(Ω)+1)I, where z = (u, ρ, p, p0, λ) and z = (u, ρ, λ) in fluid and compliance453

problems, respectively.454
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12 I. P. A. PAPADOPOULOS, P. E. FARRELL AND, T. M. SUROWIEC

(a) Before deflation. (b) After the deflation of z1.

Fig. 2. The solutions z1, z2, z3 and, z4 are zeros of the system F (z). The circles around
the solutions represent the basins of attraction within which a Newton-like solver converges to that
particular solution.

Deflation can be implemented very efficiently. In particular, the conditioning of455

the Jacobian of the deflated system does not cause computational difficulty, since456

the Newton update of the discrete deflated system is expressed as a scaling of the457

Newton update of the original discrete undeflated system via the Sherman–Morrison458

formula [21, Sec. 3]. Let Fh : Vh → Wh be an approximation to F on the finite-459

dimensional spaces Vh and Wh. Let δzh denote the solution of the deflated Newton460

system evaluated at zh ∈ Vh, to be computed, and let δyh denote the solution of the461

undeflated Newton system of Fh, assembled at the same current iterate zh. Let z, δz,462

and δy be the discrete coefficient vectors of zh, δzh, and δyh, respectively. Moreover,463

let m(z) = M(zh, z1,h) and denote the derivative of m with respect to z by m′(z).464

The solution of the discrete deflated Newton system can be computed by scaling δy465

[21, Sec. 3]:466

δz =

(
1 +

m−1(m′)>(δy)

1−m−1(m′)>(δy)

)
δy.(3.23)467

468

The same formula applies if multiple solutions have been deflated, i.e. if m(z) =469

M(zh, z1,h) · · ·M(zh, zn,h) for n > 1. The simple structure of (3.23) arises because470

the deflated residual is a (nonlinear) scalar multiple of the original residual.471

In summary, in order to compute the update δz for the discretized deflated system,472

only the original, discretized, undeflated system is solved. Its solution δy is then scaled473

as in (3.23).474

Deflation was first introduced in the context of polynomials by Wilkinson [61].475

It was then extended to differentiable finite-dimensional maps F : Rn → Rn by476

Brown and Gearhart [13]. More recently, Farrell et al. extended the original Brown477

and Gearhart technique to Fréchet-differentiable maps between Banach spaces [21].478

Deflation has been used to discover multiple solutions of cholesteric liquid crystals,479

Bose–Einstein condensates, mechanical metamaterials, aircraft stiffeners, and other480

applications [16, 19, 38, 46, 62]. It has also been extended to semismooth mappings481

[22], which is necessary in the current context of topology optimization.482

3.3. Implementation of the deflated barrier method. The essential idea483

is to use deflation to attempt to find other branches during the continuation of the484

barrier parameter, as visualized in Figure 3. As summarized in Figure 4, the deflated485

barrier method is divided into three phases: prediction, continuation and deflation.486

Prediction: Given a solution zk−1 at µ = µk−1, the algorithm calculates an initial487
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guess for the corresponding solution at µ = µk < µk−1. This is done via a feasible488

tangent prediction method (as described in Appendix B), a classical tangent predic-489

tion method [51, Sec. 4.4.1] or a secant prediction method [51, Sec. 4.4.2]. A feasible490

tangent prediction method is identical to its classical counterpart but with box con-491

straints on the predictor step to ensure the initial guess is feasible.492

Continuation: Given an initial guess for each branch at the new barrier parameter493

µk, the algorithm calculates the new solution along each branch with a primal-dual494

active set solver whilst deflating away all solutions already known at µ = µk.495

Deflation: At some subset of the continuation steps, the algorithm searches for new496

branches at µ = µk using solutions on different branches found at µ = µk−1 as ini-497

tial guesses. The search terminates when all the initial guesses have been exhausted498

(reached a maximum number of iterations without converging) or when a certain499

number of branches βmax have been found.500

We now explain the notation used in Algorithm 3.1. Let z = (u, ρ, p, p0, λ) in501

the Borrvall–Petersson case and z = (u, ρ, λ) in the compliance case. The value of502

the barrier parameter at subproblem iteration k is denoted µk. The initial guess for503

the density is denoted ρ0 and the initial guess for the volume constraint Lagrange504

multiplier is denoted λ0. The generator for the next value of µ is denoted by Θ. The505

µ-update can be adaptive or chosen a priori, provided it gives a strictly decreasing506

sequence. Under suitable conditions, the first order conditions of L
εlog
µ (z) together507

with the box constraints on ρ can be reformulated into perturbed KKT conditions508

[58, Rem. 3] which in turn can be reformulated as a semismooth system of partial509

differential equations, Fµ(z). Let510

y =

{
(u, p, p0) in the Borrvall–Petersson case,

u in the compliance case.
(3.24)511

512

Let ′|zi denote the Fréchet derivative with respect to zi. Let Sµk denote the set of513

solutions, {z}i, found at µk. Let M(·) denote the deflation operator and Z denote514

the function space of z.

Fig. 3. A visualization of the deflated barrier method. Branch 0 is discovered at µ0. A
predictor-corrector scheme is used to to follow the branch as µ decreases, denoted by circles. At
µ = µk, deflation is used to discover a new solution on a different branch (branch 1), using the
solution on branch 0 at µ = µk−1 as an initial guess. This newly discovered branch is then also
continued as µ decreases, and is denoted by the crosses.

515
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Algorithm 3.1 Deflated barrier algorithm

1: Initialize:
k ← 0 . Initial iteration number
µ0 . Initial barrier parameter
tol . Approximate solve tolerance
βmax . Maximum number of branches sought
ρ0(x)← γ . Constant initial material distribution
λ0 . Initial volume constraint multiplier

2: Approximately solve (L
εlog
µ0 )′|y(y, ρ0) = 0.. Solve state equation for y

3: z∗ ← (y, ρ0, λ0) . Initial guess
4: Approximately solve Fµ0(z) = 0 with initial guess z∗.
5: Sµ0 ← Sµ0 ∪ {z} . Include solution in solution set
6: µ1 ← Θ(µ0), k ← 1 . Update µ and k
7: while µk ≥ 0 and |Sµk−1

| 6= ∅ do
8: for zi ∈ Sµk−1

do
9: . Prediction

10: Predict solution at µk, denoted z∗.
11: . Continuation
12: Attempt to solve M (Sµk)Fµk(z) = 0 with initial guess z∗.
13: if ‖Fµk(z)‖Z∗ ≤ tol then
14: Solve has succeeded; set Sµk ← Sµk ∪ {z}.
15: end if
16: end for
17: . Deflation
18: for zj ∈ Sµk−1

do
19: if |Sµk | ≥ βmax then
20: break
21: end if
22: Attempt to solve M (Sµk)Fµk(z) = 0 with initial guess zj .
23: if ‖Fµk(z)‖Z∗ ≤ tol then
24: Solve has succeeded; set Sµk ← Sµk ∪ {z}.
25: end if
26: end for
27: µk+1 ← Θ(µk) . Choose new value of µ
28: k ← k + 1
29: end while

4. Numerical results. In all examples the systems were discretized with the516

finite element method using FEniCS [36] and the resulting linear systems were solved517

by a sparse LU factorization with MUMPS [5] and PETSc [6]. The meshes were either518

created in FEniCS or Gmsh [26]. We present three different examples of the mini-519

mization of the power dissipation of a fluid constrained by the Stokes equations, one520

constrained by the Navier–Stokes equations, and two examples of the minimization of521

the compliance constrained by linear elasticity. Throughout the numerical examples,522

hmin denotes the minimum diameter of all simplices in the mesh, where the simplex523

diameter is defined as the maximum edge length. Similarly hmax denotes the maxi-524

mum diameter of all simplices in the mesh. All solutions depicted are presented as525

computed by the deflated barrier method, with no truncation or postprocessing of the526
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Prediction
Predict the solution at µ = µk for
each branch.

Continuation

For each branch, approximately
solve M (Sµk

)Fµk
(z) = 0 with

the initial guess given by the pre-
diction phase.

Deflation

Search for new branches
by approximately solving
M (Sµk

)Fµk
(z) = 0 with initial

guesses zj ∈ Sµk−1
.

k
←
k

+
1

Fig. 4. A flowchart depicting the three phases involved in the deflated barrier method.

material distribution.527

4.1. Borrvall–Petersson double-pipe. We consider the double-pipe problem528

with volume fraction γ = 1/3, two prescribed flow inputs and two prescribed outputs,529

and the boundary conditions as prescribed in Figure 5. We use α as given in (2.1),530

with α = 2.5 × 104 and q = 1/10. Here q is a penalty parameter which controls the531

level of intermediate values (between zero or one) in the optimal design.532

We use a Taylor–Hood (CG2)2×CG1 finite element discretization for the velocity533

and pressure and CG1 elements for the material distribution. For BM, we begin with534

µ0 = 100 and apply deflation immediately to find the second branch of solutions. For535

HIK, this strategy did not converge to the second branch, although the second branch536

is discovered with µ0 = 105. In both cases tangent prediction is used, as well as a537

damped l2-minimizing linesearch [14, Alg. 2]. Figure 6 shows the minimizers of the538

double-pipe problem computed using the deflated barrier method.539

Fig. 5. Setup of the double-pipe problem. In our tests we pick f = (0, 0)> and ν = 1. The

Dirichlet boundary conditions on the velocity are u =
(
1− 144(y − 3/4)2, 0)

)>
for the top input

and output boundary flows, u =
(
1− 144(y − 1/4)2, 0)

)>
for the bottom input and output boundary

flows and u = (0, 0)> everywhere else.

In Table 1 we explore the mesh-independence of primal-dual active set solver540

iterations. We observe that with each refinement of the mesh, the number of iterations541

stay roughly constant. In particular, we notice that the behavior is consistent for542

both HIK and BM. This is a recurring theme and holds in subsequent examples. To543
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Fig. 6. The material distribution of the local (left) and global (right) minimizer of the double-
pipe optimization problem with mesh size h = 0.0141. Black corresponds to a value of ρ = 0 and
white corresponds to a value of ρ = 1. The objective functional values are J = 32.58 (left) and
J = 23.87 (right).

exemplify that the mesh-independence is not an artifact of our choice of finite element544

spaces, we also display the results of a divergence-free Scott–Vogelius (CG2)2 ×DG1545

finite element discretization for the velocity and pressure and CG1 for the material546

distribution. Stability of this discretization is ensured by using a barycentrically-547

refined mesh [45].548

In Figure 7 we plot the condition number of the Hessian as in a classical barrier549

method, and the condition number of the Hessian with the rows and columns associ-550

ated with the active-set removed. We observe that the condition number of the latter551

is significantly smaller, accounting for why our proposed methodology does not suffer552

from ill-conditioning.

BM Solver Taylor–Hood Branch 0 Branch 1

h Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0283 38,256 124 0 22 115 30 22
0.0177 97,206 123 0 22 109 30 22
0.0141 151,506 110 0 22 116 29 22

HIK solver Taylor–Hood Branch 0 Branch 1

h Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0283 38,256 174 0 43 261 14 43
0.0177 97,206 189 0 43 223 13 43
0.0141 151,506 173 0 43 197 13 43

BM solver Scott–Vogelius Branch 0 Branch 1

hmin/hmax Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0278/0.0501 58,685 155 0 22 139 29 22
0.0139/0.0250 234,005 124 0 22 120 29 22

Table 1
The cumulative total numbers of primal-dual active-set solver iterations required in the con-

tinuation, deflation and prediction phases of the double-pipe problem. Branch 0 discovers the local
minimum shown in Figure 6 and branch 1 discovers the global minimum. As we can see, the numbers
of iterations stay roughly constant for both solvers as we refine the mesh.

553
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Fig. 7. The condition number of the Hessian at each iteration of the solver in the subproblem
with µ = 7 × 10−5. The condition number of the Hessian of L0

µ arising in the linear systems of a
standard Newton solver (left) is six to seven orders of magnitude larger than the condition number

of the Hessian of L
εlog
µ arising in the linear systems of the HIK solver (right).

4.2. Neumann-outlet double-pipe. One could argue that fixing the outlet554

flows is inherently nonphysical and a more realistic model would prescribe natural555

boundary conditions on the outlets (while keeping the Dirichlet boundary conditions556

on the inlets) [17]. The correct choice of Neumann boundary conditions is nontrivial.557

Heywood et al. [27] provide an investigation into various formulations. We opt for the558

natural boundary condition,559

(−pI + 2νε(u))n = 0 on ΓN ,(4.1)560561

where ε(u) := (∇u+(∇u)>)/2 denotes the symmetrized gradient, I denotes the d×d562

identity matrix and ΓN ⊂ ∂Ω denotes the outlets. Heywood et al. [27] note that563

such a formulation does not support Poiseuille flow. However, Limache et al. [34]564

proved that (4.1) does satisfy the principle of objectivity, which is often violated by565

other common formulations, including (−pI + ν∇u)n = 0. The natural boundary566

condition (4.1) is achieved by altering the objective functional to567

JN (u, ρ) =
1

2

∫
Ω

α(ρ)|u|2 + 2ν|ε(u)|2 dx.(4.2)568
569

Since div((∇u)>) = ∇(div(u)) and div(u) = 0, we note that the minimizers of570

(4.2) are the same as those of the original functional, J , combined with the natural571

boundary conditions as described in (4.1). The other alteration in the optimization572

problem is the removal of the Lagrange multiplier, p0, since the absolute pressure level573

is set by the outflow boundary condition.574

We employ the Taylor–Hood discretization and initialize µ0 = 1000. Deflation575

finds the second, third and fourth branches at µ = 82.4. For h = 0.0333, deflation576

discovers branch 2, then branch 1 and 3, whereas for the other mesh sizes, deflation577

discovers the branches in ascending order.578

The removal of an imposed outlet flow has an interesting effect. The global579

minimizer in the shape of a double-ended wrench is now a local minimizer. Two new580

Z2-symmetric global minimizers now exist as shown in Figure 8. This is not entirely581

surprising. There is a cost associated with the pipe splitting and if the optimization582

problem does not require the flow to leave both outlets, then it is favorable for the583

flow to exit via one outlet, not both. This is reflected in the resulting cost.584

The mesh-independence of the algorithm is investigated in Table 2. As before,585

mesh-independence is observed.586
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Fig. 8. The material distribution of two local and two global minimizers of the double-pipe
optimization problem with natural boundary conditions on the outlets, instead of Dirichlet conditions,
with h = 0.0125. Black corresponds to a value of ρ = 0 and white corresponds to a value of ρ = 1.
From left to right the objective functional values are JN = 32.35, 22.92, 18.46, and 18.46.

BM Solver Branch 0 Branch 1

h Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0333 27,455 118 0 53 108 49 34
0.0250 48,605 136 0 37 107 34 37
0.0125 193,205 113 0 35 106 45 36

Branch 2 Branch 3

h Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0333 27,455 166 199 55 166 149 55
0.0250 48,605 145 123 45 145 157 45
0.0125 193,205 128 151 46 128 146 46

Table 2
The cumulative total numbers of BM solver iterations required in the continuation, deflation

and prediction phases of the double-pipe problem with natural boundary conditions on the outlets.

4.3. Roller-type pump. In this example problem [17, Sec. 2.1.4.4], the domain587

is given by588

Ω = (0, 1)2\
{

(x, y) ∈ (0, 1)2 : (x− 0.5)
2

+ (y − 0.5)
2 ≤ (0.3)

2
}
.589

590

The boundary conditions on u are given by:591

u =


(0, 1− 20(x− 0.61)2)>, if 0.56 < x < 0.66 and y = 0,

(1− 20(y − 0.95)2, 0)>, if x = 1 and 0.9 < y < 1,

10/3(y − 1/2, 1/2− x)>, if (x− 0.5)2 + (y − 0.5)2 = (0.3)2,

(0, 0)>, elsewhere.

592

593

These boundary conditions model an inlet on the bottom of the domain and an outlet594

on the right of the domain with a pump rotating at a constant velocity in the center595

of the domain where the fluid experiences no-slip boundary conditions. We employ596

the Taylor–Hood discretization and initialize µ0 = 1000. Deflation finds the second597

branch at µ = 6.78.598

A global and local minimum of the problem are shown in Figure 9a. The local599

minimum chooses to avoid the pump in favor of taking the path with the shortest600

distance from the inlet to the outlet, while the global minimum exploits the rotation601

given by the pump. The local minimizer for q = 1/10 has areas where ρ ≈ 1/2, which602

has an ambiguous physical interpretation. In order to verify whether ρ should be603

equal to zero or one in such areas, a mixture of grid-sequencing and continuation in q604
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was performed, resulting in the solution shown in Figure 9b. The mesh-independence605

of the algorithm is verified in Table 3.

BM solver Branch 0 Branch 1

hmin/hmax Dofs Cont. Defl. Pred. Cont. Defl. Pred.

0.0258/0.0509 7388 260 0 55 118 80 35
0.0127/0.0255 29,174 186 0 51 75 117 25
0.0064/0.0127 113,096 177 0 46 83 99 29

Table 3
The cumulative total numbers of BM solver iterations required in the continuation, deflation

and prediction phases of the roller-type pump problem to find the solutions shown in Figure 9a. The
number of iterations are mesh-independent.

(a) The local (left) and global (right) minimizers, ρ. (b) Refined local minimizer.

Fig. 9. (a) The material distribution of the local and global minimizers of the roller-type pump
optimization problem, with hmin = 6.4 × 10−3. Black corresponds to a value of ρ = 0 and white
corresponds to a value of ρ = 1. The gray area is the hole removed from the domain. The arrows
indicate the direction and magnitude of the velocity, u. The values of the objective functional are
J = 26.84 (left) and J = 22.67 (right). (b) A mixture of grid-sequencing of the mesh where ρ ≈ 1/2
and the continuation of q to larger values was performed on the local minimum of the roller-type
pump optimization problem in order to remove areas where ρ ≈ 1/2. The resulting refined solution
has clearly defined areas of ρ = 0 and ρ = 1. Here hmin = 0.0033, q = 0.65 and J = 29.17.

606

4.4. Five-holes double-pipe with Navier–Stokes. We consider the original607

Borrvall–Petersson double-pipe problem with Dirichlet outflow conditions, but modify608

the domain to include five small decagonal holes with inscribed radius 0.05 positioned609

at (1/2, 1/3), (1/2, 2/3), (1, 1/4), (1, 1/2) and (1, 3/4), as shown in Figure 10. We610

further show the flexibility of our method by considering fluid flow constrained by the611

incompressible Navier–Stokes equations. This is achieved by introducing Lagrange612

multipliers, ua ∈ H1
0 (Ω)d, pa ∈ L2

0(Ω), and pa,0 ∈ R, to enforce the Navier–Stokes613

equations. We then define the Lagrangian as614

L(u, ρ,ua, p, pa, p0, pa,0, λ)

= J(u, ρ)−
∫

Ω

p div(u)dx−
∫

Ω

p0p dx−
∫

Ω

λ(γ − ρ)dx−
∫

Ω

pa,0pa dx

−
∫

Ω

ν∇u : ∇ua + δ(u · ∇)u · ua + α(ρ)u · ua − pa div(ua) dx,

(4.3)615

616

where δ denotes the (constant) fluid density. We choose ν = 1 and δ = 1, with other617

variables equal to those in the original double-pipe problem. We employ the Taylor–618
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Fig. 10. Setup of the five-holes double-pipe problem.

Hood discretization and initialize µ0 = 200. We use feasible tangent prediction and619

apply an l2-minimizing linesearch in the continuation.620

The holes have the effect of substantially increasing the number of local minima, as621

shown in Figure 1. This example reveals that the number of local minima of a topology622

optimization problem is not always small and that the deflated barrier method is623

effective in finding many of them. A small number of solutions found exhibited regions624

of ambiguity ρ ≈ 1/2, and underwent grid-sequencing and continuation in q in order625

to remove these areas. We note that there are more solutions that deflation did not626

find, since there are missing Z2 symmetric pairs which must also be solutions.627

4.5. Cantilever beam. In this example we use the deflated barrier method to628

find multiple stationary points of compliance problems. However, due to the lack629

of regularity of the Lagrange multipliers associated with the box constraints on ρ,630

the solver exhibits mesh-dependent behavior. With each refinement of the mesh, the631

number of iterations required for the solver to converge increases in an unbounded632

way. This is difficult to resolve, and appropriate techniques to address this are the633

subject of ongoing research. Practically, we first run the algorithm on a coarse mesh634

and then use grid-sequencing to obtain refined solutions.635

The two-dimensional cantilever beam optimization problem is to find minimizers636

of (C) that satisfy the boundary conditions637

σn = (0,−1)> on ΓN ,638

u = (0, 0)> on ΓD,639

σn = (0, 0)> on ∂Ω\{ΓN ∪ ΓD},640641

with domain Ω = (0, 1.5)× (0, 1), where642

ΓD = {(x, y) ∈ ∂Ω : x = 0},643

ΓN = {(x, y) ∈ ∂Ω : 0.1 ≤ y ≤ 0.2, x = 1.5} ∪ {(x, y) ∈ ∂Ω : 0.8 ≤ y ≤ 0.9, x = 1.5} .644645

These boundary conditions describe a cantilever clamped to the y-axis with two trac-646

tion forces pulling the cantilever vertically downwards in two places at x = 1.5. We647

use CG1 finite elements for all variables. We initialize the deflated barrier method at648

µ0 = 10 and discover the second branch at µ = 4.25× 10−3. The two solutions found649

are shown in Figure 11.650

4.6. Messerschmitt–Bölkow–Blohm (MBB) beam. The two-dimensional651

MBB beam optimization problem is to find minimizers of (C) that satisfy the bound-652
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Fig. 11. The material distribution of two solutions of the cantilever beam. The parameters are
hmin = 3.56× 10−3, hmax = 5.70× 10−2, ε = 4.40× 10−3, β = 1.8× 10−4, γ = 0.5, εSIMP = 10−5,
ps = 3, and the Lamé coefficients are µl = 75.38 and λl = 64.62. J = 6.18 × 10−3 (left) and
J = 6.08× 10−3 (right).

ary conditions653

u · (1, 0)> = 0 on ΓD1
,654

u · (0, 1)> = 0 on ΓD2
,655

σn = (0,−10)> on ΓN ,656

σn = (0, 0)> on ∂Ω\{ΓN ∪ ΓD1
∪ ΓD2

},657

658659

where Ω = (0, 3)× (0, 1) and660

ΓD1 = {(x, y) ∈ ∂Ω : x = 0}, ΓD2 = {(x, y) ∈ ∂Ω : y = 0, 2.9 ≤ x ≤ 3} ,661

ΓN = {(x, y) ∈ ∂Ω : y = 1, 0 ≤ x ≤ 0.1} .662663

These boundary conditions describe a half-beam that is fixed horizontally on the y-axis664

and fixed vertically at its bottom right corner on the x-axis. There is a boundary force665

pushing vertically downwards at the top left corner, which represents the middle of the666

beam when the half-beam is mirrored. We use the same finite element discretization667

and initialize the deflated barrier method at µ0 = 50. Deflation discovers the second668

branch at µ = 1.58 × 10−1. As in the cantilever problem, the algorithm is mesh-669

dependent and grid-sequencing is used to find refinements. The two solutions found670

are shown in Figure 12.

Fig. 12. The material distribution of two solutions of the MBB beam. The parameters are
hmin = 7.07× 10−3, hmax = 2.83× 10−2, ε = 1.90× 10−2, β = 9× 10−3, γ = 0.535, εSIMP = 10−5,
ps = 3, and the Lamé coefficients are µl = 75.38 and λl = 64.62. J = 0.723 (left) and J = 0.681
(right).

671
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5. Conclusions. In this work we have developed an algorithm for systemically672

finding multiple solutions of topology optimization problems. We opted for the density673

approach, which requires no prior knowledge of the shape or topology of the design. To674

handle the box constraints on the material distribution ρ, we formulate an enlarged-675

feasible set barrier functional combined with a primal-dual active set solver to ensure676

the iterates are feasible with respect to the true box constraints. We observe com-677

putationally that this approach does not suffer the ill-conditioning or asymptotically678

infeasible Newton steps that normally hinder primal barrier methods. Furthermore,679

unlike traditional primal-dual interior point methods, if the Lagrange multipliers of680

the box constraints in the underlying continuous problem are sufficiently regular, this681

formulation exhibits mesh-independence. The algorithm successfully found multiple682

solutions in several problems constrained by the Stokes equations, the Navier–Stokes683

equations, and the equations of linear elasticity.684

Code availability. For reproducibility, the solver and example files to generate685

the iteration tables and solutions can be found at https://bitbucket.org/papadopoulos/686

deflatedbarrier/. The version of the software used in this paper is archived on Zenodo687

[1].688

Appendix A. Benson and Munson’s active-set reduced space solver.689

We show that, in the context of a linear elliptic control problem, if the active and690

inactive sets of HIK and BM coincide, then the updates calculated for the active and691

inactive sets are equal. In essence, we show that the algorithms produce iterates that692

are a half-step out of sync, where we define the notion of a half-step below. If the693

active and inactive sets of BM were redefined to be the same as HIK, then BM would694

inherit the provably-good convergence properties of HIK. To our knowledge, this is the695

first analytical result concerning BM. Although the result does not cover the nonlinear696

case, it might help build an intuitive understanding as to why BM effectively solves697

the semismooth formulations found in this work.698

Consider the minimization problem699

min
y∈L2(Ω)

J(y) :=
1

2
(y,Ay)L2(Ω) − (f, y)L2(Ω) subject to y ≥ φ,(A.1)700

701

where (·, ·)L2(Ω) denotes the inner product in L2(Ω), f and φ ∈ L2(Ω), and A ∈702

L(L2(Ω)) is self-adjoint and coercive. It can be shown there exists a unique solution703

y∗ to (A.1) and there exists a Lagrange multiplier λ∗ ∈ L2(Ω) such that (y∗, λ∗) is704

the unique solution to705

Ay − λ = f,

y ≥ φ, λ ≥ 0, (λ, y − φ)L2(Ω) = 0.
(A.2)706

707

In order to avoid confusion, we denote the iterates generated by HIK by yk and the708

iterates generated by BM by uk. The active and inactive sets at iteration k, Ak and709

Ik in HIK and the active and inactive sets Ak and Ik in BM are defined by710

Ak = {x : λk − (yk − φi) > 0}, and Ik = {x : λk − (yk − φ) ≤ 0},711

Ak = {x : uk = φ and F (uk) > 0}, and Ik = {x : uk > φ or F (uk) ≤ 0},712713

where F (uk) ∈ L2(Ω) is the L2-dual representation of the Fréchet derivative of J(uk).714

As in Hintermüller et al. [28, Sec. 4], we define EAk the extension-by-zero operator715

for L2(Ak) to L2(Ω)-functions, and its adjoint E∗Ak , the restriction operator of L2(Ω)716

This manuscript is for review purposes only.

https://bitbucket.org/papadopoulos/deflatedbarrier/
https://bitbucket.org/papadopoulos/deflatedbarrier/
https://bitbucket.org/papadopoulos/deflatedbarrier/


MULTIPLE SOLUTIONS IN TOPOLOGY OPTIMIZATION 23

to L2(Ak)-functions. We define EIk , E∗Ik , EAk , E∗Ak , EIk and E∗Ik similarly. We717

note that all these restriction and extension operators are linear. We now present the718

infinite-dimensional description of the active-set reduced space strategy (BM).719

(BM1) Choose a feasible guess u0 ∈ L2(Ω) and set k = 0;720

(BM2) Find δuk ∈ L2(Ω) such that E∗IkAEIkE
∗
Ikδuk = −E∗Ik(Auk − f)721

and E∗Akδuk = 0;722

(BM3) Set uk+1 = π(uk + δuk) where π is the L2-projection onto the constraint, i.e.723

for any given u ∈ L2(Ω), π(u) ∈ K := {v ∈ L2(Ω) : v ≥ φ} satisfies724

‖u− π(u)‖L2(Ω) ≤ ‖u− v‖L2(Ω) for all v ∈ K.725726

(BM4) If convergence is reached, terminate; otherwise set k ← k + 1 and go to step727

(BM2).728

Theorem A.1. Let yk denote the primal variable of HIK at iteration k and let δyk729

denote the update calculated at iteration k. Let λk denote the dual variable at iteration730

k. We define half steps such that the active set is updated first, i.e. EAkyk+1/2 =731

EAkyk+1 and EIkyk+1/2 = EIkyk.732

Let uk denote the primal variable of BM at iteration k and let δuk denote the733

update calculated at iteration k.734

Suppose that Ak = Ak, Ik = Ik and E∗Ikyk = E∗Ikuk. Then the following three735

equalities hold;736

(E1) yk+1/2 = uk;737

(E2) E∗Ikδyk = E∗Ikδuk;738

(E3) yk+3/2 = uk+1.739

Proof. It is shown in [28] that the update for the inactive set of HIK satisfies740

E∗Ik(Aδyk) = −E∗Ik(Ayk − f).741742

Expanding the left and right hand sides, we see that743

E∗IkAEIkE
∗
Ik
δyk + E∗IkAEAkE

∗
Ak
δyk = −E∗IkAEIkE

∗
Ik
yk − E∗IkAEAkE

∗
Ak
yk + E∗Ikf.744745

Subtracting the second term on the left hand side, we see that746

E∗IkAEIkE
∗
Ik
δyk = −E∗IkAEIkE

∗
Ik
yk − E∗IkAEAkE

∗
Ak

(yk + δyk) + E∗Ikf.(A.3)747748

By definition E∗Ak(y + δyk) = E∗Akyk+1/2 and by assumption Ak = Ak, Ik = Ik and749

E∗Ikyk = E∗Ikuk. Furthermore, since by assumption Ak = Ak and since E∗Akδyk =750

E∗Ak(φ− yk) as derived in [28] we observe that751

E∗Akyk+1/2 = E∗Ak(yk + φ− yk) = E∗Akuk.(A.4)752753

Since, by definition, the first half step in HIK is only an update on the active set, we754

see that E∗Ikyk+1/2 = E∗Ikyk = E∗Ikuk. We therefore have755

yk+1/2 = uk,(A.5)756757

and (E1) holds. From (A.4), we can see that (A.3) is equivalent to758

E∗IkAEIkE
∗
Ik
δyk = −E∗Ik(Auk − f).(A.6)759760
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We note that (A.6) is the linear system solved to calculate the update for the inactive761

set of BM and hence762

E∗Ikδyk = E∗Ikδuk.(A.7)763764

Hence (E2) holds. We now show that yk+3/2 = uk by considering four possible cases.765

(First case) Consider C = Ik ∩ Ik+1. If C has measure zero, then we are done.766

Suppose that |C| > 0. Then since the dual variable is set to zero on the inactive767

set, we know that E∗Cλk+1 = 0. Therefore, by definition of Ik+1, we know that768

E∗Cyk+1 ≥ E∗Cφ. Hence E∗Cuk + E∗Cδuk ≥ E∗Cφ and therefore E∗Cuk+1 = E∗Cπ(uk +769

δuk) = E∗Cuk +E∗Cδuk = E∗Cyk+1. The first half step in HIK only changes the active770

set, hence E∗Cyk+3/2 = E∗Cuk+1.771

(Second case) Consider C = Ik ∩Ak+1. If C has measure zero, then we are done.772

Suppose that |C| > 0. Then since the dual variable is set to zero on the inactive773

set, we know that E∗Cλk+1 = 0. Therefore, by definition of Ak+1, we know that774

E∗Cyk+1 < E∗Cφ. Hence E∗Cuk + E∗Cδuk < E∗Cφ and therefore E∗Cuk+1 = E∗Cπ(uk +775

δuk) = E∗Cφ. By the half-step update of the active set, Ak+1, E∗Cyk+3/2 = E∗Cφ.776

Hence E∗Cyk+3/2 = E∗Cuk+1.777

(Third case) Consider C = Ak ∩ Ak+1. If C has measure zero, then we are done.778

Suppose that |C| > 0. This implies that E∗Cyk+3/2 = E∗Cφ. Since Ak = Ak, we know779

that E∗Cuk+1 = E∗Cφ. Hence E∗Cyk+3/2 = E∗Cuk+1.780

(Fourth case) Consider C = Ak ∩ Ik+1. If C has measure zero, then we are781

done. Suppose that |C| > 0. By definition of Ak, this implies that E∗Cyk+1 = E∗Cφ.782

Furthermore, by definition of Ik+1 and since the first half step of HIK only changes783

the active set, we see that E∗Cyk+3/2 = E∗Cφ. By definition of Ak, we know that784

E∗Cuk+1 = E∗Cφ. Hence E∗Cyk+3/2 = E∗Cuk+1.785

From the four cases, we conclude that786

yk+3/2 = uk+1.(A.8)787788

Appendix B. Feasible tangent predictor. Predictor-corrector methods are789

often used in tracing bifurcation diagrams [51]. The idea is that as the parameter of790

the problem changes, a cheap predictor generates an initial guess for the solution of791

the system with the new parameter. A corrector method is then used to converge from792

this initial guess to the true solution. In our context the primal-dual active-set solver793

is the corrector method. Our feasible tangent predictor method draws inspiration794

from the usual tangent predictor method, which solves a linear equation to find an795

initial guess, but applies box constraints to ensure the predicted guess is feasible.796

The usual tangent predictor is derived as follows. Consider a Fréchet-differentiable797

equation F (z0, µ0) = 0, where µ = µ0 is the parameter we wish to vary. Consider a798

new parameter µ = µ1 and let δµ := µ1 − µ0. Furthermore, let w := (z, µ). The goal799

is to find δz such that z0 + δz ≈ z1 where z1 is the solution to800

F (z1, µ1) = 0.(B.1)801802

A first order approximation of (B.1) is803

0 = F (z1, µ1) ≈ F (z0, µ0) + F ′(w)δw = F ′z(z
0, µ0)δz + F ′µ(z0, µ0)δµ.(B.2)804805

Hence an initial guess, z∗ = z0 + δz, can be calculated by solving806

F ′z(z
0, µ0)δz = −F ′µ(z0, µ0)δµ,(B.3)807808
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for δz. In the context of the deflated barrier method this is equivalent to solving809

(L
εlog

µ0 )′′|z,z(z0)δz + (L
εlog

µ0 )′′|z,µ(z0)δµ = 0,(B.4)810
811

for δz. The traditional tangent predictor has no guarantee that 0 ≤ ρ0 + δρ ≤ 1812

a.e. To ensure that the initial guess is feasible, we instead transform (B.4) into a813

complementarity problem. Consider the linear operator, T (w) defined by814

〈T (w0), δw〉 = (L
εlog

µ0 )′′|z,z(z0)δz + (L
εlog

µ0 )′′|z,µ(z0)δµ.815
816

Given sufficient regularity of the dual variable T (w) and the primal variable δw, we817

can consider the following complementarity problem,818

δρ(x) = −ρ0(x) and T (w0)(x) ≥ 0,(B.5)819

or − ρ0(x) < δρ(x) < 1− ρ0(x) and T (w0)(x) = 0,(B.6)820

or δρ(x) = 1− ρ0(x) and T (w0)(x) ≤ 0.(B.7)821822

Solving (B.5)–(B.7) constructs a feasible tangent predictor, z∗. We note that this823

method does not perform a pointwise projection. For example, in the topology opti-824

mization of compliance, where we require the material distribution to live in H1(Ω),825

we are instead performing a H1-projection on the prediction update. In the case826

where (B.6) holds a.e. in Ω, finding the feasible tangent predictor reduces to solving827

(B.4).828
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